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The Rayleigh stability equation of inviscid linearized stability theory was 
integrated numerically for amplified disturbances of the hyperbolic-tangent 
velocity profile. The evaluation of the eigenvalues and eigenfunctions is followed 
by a discussion of the streamline pattern of the disturbed floy. Here no qualitative 
distinction is found between an amplified and the neutral disturbance. But con- 
sidering the vorticity distribution of the disturbed flow it is shown that in the 
case of amplified disturbances two concentrations of vorticity occur within a 
disturbance wavelength, while in the neutral case only one maximum of vorticity 
exists. The results are discussed with respect to the instability mechanism of free 
boundary-layer flow. 

1. Introduction 
It is well-known that two-dimensional unidirectional flow of an inviscid fluid 

cannot be unstable with respect to small wavy disturbances unless the velocity 
profile has an inflexion point. This theorem was first formulated by Rayleigh 
(1880). Later Tollmien (1935) showed that in certain circumstances the existence 
of an inflexion point is a sufficient condition for instability. A special class of 
profiles with inflexion points is provided by jets and wakes. They also have a 
certain importance in meteorology in connexion with the formation of cyclones. 

The instability mechanism of such velocity profiles is an inviscid one, and the 
presence of viscosity will only damp this process. Velocity profiles without an 
inflexion point, e.g. the boundary-layer profiles of a flat plate, are stable without 
viscosity, and an instability can occur only if viscosity is taken into account 
(Lin 1955). Stability calculations by Lessen (1950) and Esch (1957) for special 
free boundary-layer profiles taking viscosity into account have shown actually 
that for large Reynolds numbers the neutral curve approaches asymptotically 
the inviscid value. The same result was obtained by Tatsumi & Kakutani (1958) 
who dealt with the instability of a plane jet. This was also confirmed by experi- 
mental investigations of plane and axisymmetric jets by Sat0 (1960), Schade & 
Michalke (1962) and Wille (1963). Thus for large Reynolds numbers it is sufficient 
to calculate the instability of free boundary layers neglecting the viscosity. 

Furthermore, for small viscosity the velocity component v perpendicular to 
the basic flow is small compared with the u-component. The flow can then be 
considered approximately parallel and the linearized stability theory of parallel 
flow is applicable to the instability of boundary-layer velocity profiles. 
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The simplest case of a velocity profile with an inflexion point consists of two 
streams of different but constant velocities separated by a surface of dis- 
continuity. Helmholtz (1868) has shown that this ‘jump’-profile is unstable. 
Rayleigh (1880) has considered the shear layer of finite thickness in which the 
velocity decreases linearly from a maximum value to zero. For this ‘ broken-line’ 
profile he calculated the growth rate of amplified disturbances as a function of 
the disturbance wave-number in closed form. For special steadily curved half- 
jet profiles the inviscid stability characteristics were calculated by Carrier 
(1954) and by Lessen & Fox (1955). In the case of the analytically very simple 
hyperbolic-tangent velocity profile the eigenvalue and the eigenfunction of the 
neutral disturbance were given by Garcia (1956). For small wave-numbers of 
the disturbance the instability characteristics of this profile were calculated by 
Drazin & Howard (1962). 

As a contribution to the understanding of the instability mechanism of free 
boundary layers at  infinite Reynolds numbers this paper presents the results of 
a numerical computation of the eigenvalues and the eigenfunctions of the Ray- 
leigh stability equation as well as the streamlines and the vorticity distribution 
of the disturbed hyperbolic-tangent profile. 

2. The inviscid linearized disturbance equation in the two-dimensional 
case 

Rayleigh (1 880) derived, for the two-dimensional case, the differential equation 
of a small disturbance in an inviscid flow with a basic velocity U(y) in the x- 
direction. A small disturbance ul(x, y, t )  and vl(x, y, t )  is superimposed on the 
basic flow with the assumption u1 < U and vl < U .  A stream function q91(x, y, t )  
for the disturbance motion is defined by 

u1 = aq9,lay, vl = -aq911ax. (1) 

Furthermore, we consider a wavy disturbance and write the stream function 
as 

II.,(x, y, t )  = @[$(y) eia@-CO I, 
where $(y) is the amplitude and a the wave-number of the disturbance. The 
quantity c = c, + ic, is generally complex; c, is the phase velocity and ci a measure 
of the amplification of the disturbance.t Inserting (1)  and (2) into the Euler 
equation of motion and neglecting the second-order terms of the disturbance 
we obtain the Rayleigh stability equation 

(3) 

For unbounded velocity profiles the disturbance must vanish at infinity, so 

[ u - c] [$” - a2$] - U“$ = 0, 

where primes denote differentiation with respect to y. 

the boundary conditions are 
$( -00) = $(+a) = 0. (4) 

t Formally the amplification or damping of a disturbance seems to depend on whether 
ci is greater or smaller than zero. But Lin (1955) has shown that results of inviscid stability 
theory are physically only significant for amplified disturbances. 
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We therefore have to solve an eigenvalue problem in order to determine c = c ( a ) .  
Since c is generally complex, q5 = q5, + will be complex too. The behaviour 
of unbounded velocity profiles for large values of y is determined by the condition 

lim U””(y) = 0. ( 5 )  
V-kt  W 

Thus for the asymptotic behaviour of the eigenfunctions 4 it follows from (3), 
if the boundary condition (4) is to be satisfied, that for y -+ +m 

4 N e-ay, 4‘ -4, (6) 

andfory -+ -m q5 N cay, q5” N a$. (7) 

To simplify the numerical evaluation of the eigenvalues we set 

# eXP(J@dY). ( 8) 

Thus we obtain from (3) the corresponding Riccati equation in @(y): 

@’= a2-@2+U”/(U-c). ( 9) 

@(+co) = -a, @(-a) =+a. ( 10) 

The boundary conditions for @( y) become, according to (6) and (7), 

3. Evaluation of the eigenvalues for the hyperbolic-tangent profile 

less form by U(y) = 0-5[1+ tanh y] 

and shown in figure 1. Since the profile is antisymmetric with respect to its 
inflexion point (y = 0), it follows (Tatsumi & Gotoh 1960) that, provided the 
unstable eigenfunction is unique, the phase velocity c, of the disturbance is 
independent of the wave-number a, and 

The velocity profile whose stability is investigated here is given in dimension- 

(11)  

C, = U ( 0 )  = 0.5. 

q5” - [a2 - 2( 1 - tanh2 y)] q5 = 0. 

(12) 

(13) 

In  the neutral case we have ci = 0. Then equation (3) can be written 

The symmetric and antisymmetric solutions of (13) are 

q51 = a coshay - sinhay tanh y, 
q52 = a sinh ay - cosh ay tanh y. 

The only eigenvalue is a: = 1. Then the eigenfunction is 

g5 = r$l = sech y, (15) 

which was given by Garcia (1956) 

be integrated numerically. But first the new independent variable 
In  order to evaluate the eigenvalues ci + 0, the differential equation (9) must 

z = tanhy (16) 
Fluid Mech. 19 35 
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is introduced in order to reduce the integration region to a finite interval. Then 
we obtain using (1 1) and (12) 

a@ a 2 - @ 2  22 - 
a2 1-22 Z-i2C,’ 

2 

1 

Y O  

-1  

- 2  

FIGURE 1. Hyperbolic-tangent velocity profile. 

Separating the real and imaginary part, 0 = Qr + iOi, we get the following system 
of differential equations of first order: 

The transformed boundary conditions are 

At the boundaries 2 = & 1 the derivatives of @(z) are undetermined. But using 
L’Hospital’s rule we can evaluate the limiting values from (18). They are 
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As can be seen from equations (18), cDp(x) must be an antisymmetric function and 
@&) a symmetric one. Therefore it is sufficient to integrate (18) in the interval 
- 1 z S 0. Equations (1 8) were integrated numerically for fixed wave-number 
a starting from z = - 1 with the initial condition (19) and with reference to (20 ) ,  
choosing ci by trial and error so that 

@,(O)  = 0, (dcD,/dx),,, = 0. (21) 
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FIGURE 2. Solutions @(z) of equation (18) for various wave-numbers a. 

The integration was performed on a LGP 30 digital computer using a Runge- 
Kutta procedure with an integration step of AZ = 0.025. 

For the ‘trivial ’ cases a! = 1 and a = 0 the functions @(z) can be written down 
in closed form. They become 

for a = 1: @&) = -2 , cDi(2) = 0;  (22 )  
z( 1 - 2 2 )  

cD&) = ___- 
2 2  + ( 2Ci)2 

2c,( 1 - 22)  
cDi(Z) = _____ 

22 + ( 2c1)2 - and for a = 0: (23) 

The latter function satisfies the boundary conditions (19) for any ci, i.e. the solu- 
tion is not unique. But from the solutions for a -+ 0, we find that we have to 
choose c, = 0.5. 

Some functions @ ( x )  are plotted in figure 2.  The eigenvalues ci are given in 
table 1 and plotted vs the wave-number a in figure 3. For small values of a the 

35-2 
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results are compared with the values from the 3-term approximation by Drazin 
& Howard (1962). Up to the wave-number a = 0.2 the agreement is good. The 
growth rate aci as a function of the wave-number a is also plotted in figure 3. 
The maximum amplification is acfma,x = 0.0949 and occurs a t  a = 0.4446. 

a ci aci 
1~0000 0~0000 0~00000 
0-9000 0.0327 0.02942 
0.8000 0.0674 0.05388 
0.7000 0-1044 0.07305 
0.6000 0.1442 0.08650 
0.5000 0.1875 0.09376 
0.4000 0.2352 0.09410 
0.3000 0.2885 0.0 8 6 5 4 
0.2000 0.3487 0.06975 
0~1000 0.4184 0.04184 
0~0000 0.5000 0~00000 
0.4446 0.2133 0.09485 

TABLE 1 

0.100 

0.075 

0.050 

0.025 

FIGURE 3. Eigenvalues ct and growth rate act  'us wave-number a: of the 
hyperbolic-tangent velocity profile. 

4. Evaluation of the eigenfunctions for the hyperbolic-tangent profile 
With the computed eigenvalues we can now evaluate the eigenfunctions of the 

Rayleigh stability equation by integrating (3). From (8) i t  follows that $&) 
is a symmetric function and $&y) an antisymmetric one. Therefore we can 
restrict the integration to the interval 0 5 y < 00. Since the eigenfunctions are 
determined except for an arbitrary multiplicative constant alone, we normalize 
the initial values conveniently to 

The initial gradient is given by (8), 
$AO) = 1, $m = 0. (24) 

= W O )  $ ( O ) ,  (25) 
or &(O) = 0, $;(o) = (Di(0). (26) 
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Qi(0), however, is known from the evaluation of the eigenvalues (53). With the 
initial values (24) and (26) the Rayleigh stability equation (3) was now solved 
using a Runge-Kutta procedure. In  figures 4 and 5 the eigenfunctions r$,(y) 
and &(y) are shown for the wave-numbers a = 1, a = 0.9, a = 0.6, a = 0.4446, 
a = 0.2 and a = 0. For the ‘trivial’ case a = 0 the eigenfunctions are 

It should be noticed that at y = 0 we have, for all wave-numbers 0 < a < 1, 
#AY) = 1, M Y )  = tanhy. (27) 

(28) qq0) = a2$&(0) > 0. 

t 

\\ \\ \a:=02 

I , L 
.1 2 3 4 5 6 7 

Y 
FIGURE 4. Eigenfunctions q$(y) of the hyperbolic-tangent velocity profile 

for various wave-numbers a. 

2 3 4  5 
Y 

FIGURE 5. Eigenfunetions $$(y) of the hyperbolic-tangent velocity profile 
for various wave-numbers a. 

5. Streamlines of the disturbed hyperbolic-tangent profile 
Knowing the solution of the Rayleigh stability equation, let us now consider 

the physical properties of the disturbed tanh profile. First, it  may be of interest 
to calculate the stream function @(x, y ,  t )  and especially the streamlines @ = const. 
of the disturbed flow. This stream function is found by adding the stream 
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function @,(x, y, t )  of the disturbance to the stream function +o(y) of the basic 
flow. In  our case we have 

@o =JUdy+const. = y+&ln(l+e-2v), (29) 

where the constant is determined by the condition +o( -00) = 0. Further, the 
disturbance stream function becomes with (2) 

@,(x, y,t) = e"cit[$,(y) cosa(~-c, t ) -$~(y)s ina(x-c , t )] .  (30) 
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FIGURE 6. Streamlines of the disturbed velocity profile U ( y )  = 0+5[1 + t a d  y] for the 
wave-numbers of maximum amplification = 0.4446 and of the neutral disturbance 
cc = 1 at the time t = 0 and a disturbance magnitude E = 0.1. 

The total stream function is given by 

@ ( x , ~ , t )  = @o+e@l = g++In(1+e-2") 
+eeacit[#Jr(y) cosa(x - c,t) - $&) sina(x - c,t)] ,  (31) 

where B is an arbitrary constant which may be interpreted as a measure of the 
magnitudeof thedisturbance. Small disturbancesarepresent if B < 1. The stream- 
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lines 9 = const. depend on the time t .  But without loss of generality we can put 
t = 0 in order to study the behaviour of the disturbed flow. The streamlines 

9 = y+~ln(l+e-2~)+~[q5,(y)cosax-q5~(y)sinax] = const. (32) 

were computed numerically using an iteration process. They are shown in figure 6 
for the most strongly amplified wave-number cc = 0.4446 and for the neutral 
case a = 1 assuming e = 0.1. Qualitatively there seems to be no distinction 

I I I a = 0 4 4 6  
L I 
c CI 

- 2  - 

I 

0.5 

I 
I 

I I I I  - 1 - 3  
0 2 4 6 %  

FIGURE 7. Streamlines of the disturbed velocity profile U(y) = 0.5 tanh y for the wave- 
numbers of maximum amplification IX = 0.4446 and of the neutral disturbance a = 1 
at the time t = 0 and a disturbance magnitude E = 0.1. 

between the streamline pattern of the most strongly amplified and the neutral 
disturbance. The streamlines of the basic flow, which are straight lines parallel 
to the x-axis, are displaced wavily by the disturbance. The amplitude of this 
displacement is large in the range of small velocities ( y  c 0)  and decreases with 
increasing velocity ( y  > 0). Furthermore, there exists a region of rotating fluid 
in the range of small velocity. A quantitative comparison between the neutral 
end the most strongly amplified disturbance shows that the centre of the rotating 
fluid region within a wavelength h is shifted downstream for a = 0.4446 unlike 
the situation for a = 1. 

Another shape of the streamline pattern is obtained, when we move downstream 
with the phase velocity of the disturbance. Then the relative basic flow is described 
by the velocity profile 

V ( y )  = 0.5 tanh y (33) 
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and the corresponding stream function is 
$o(y) = 061n(coshy). (34) 

The solution of the Rayleigh stability equation for the profile (33) differs from 
that for the profile (1 1) only by c, = 0. Therefore the stream function for the 
profile (33) a t  the time t = 0 is 

9 = + In (cosh y) + e[$,(y) cos ax - $$(y) sin ax]. (35) 

The streamlines $ = const. of this profile (33) are shown in figure 7 for the wave- 
number a = 0.4446 and a = 1 and for E = 0.1. In  both cases now the rotating 
fluid regions occur at another part of the profile, namely in the neighbourhood 
of y = 0,  where the velocity (33) of the basic flow becomes zero. One may sup- 
pose that the rotating fluid region may be produced by a ‘vortex’, i.e. by a con- 
centration of vorticity, which is surely not a potential vortex. We cannot, how- 
ever, conclude from figures 6 and 7 that the ‘vortices’ are placed at different 
positions for the profiles (11) and (33), because the rotating fluid-regions appear 
at different positions. This cannot be true, since the vorticity distribution is not 
changed when a constant velocity is superimposed on a velocity profile. Therefore, 
considering the rotating fluid regions, it cannot be decided whether and where a 
concentration of vorticity exists. Thus we see that no essential insight in the 
instability mechanism is gained from a study of the streamlines of the disturbed 
flow. This may be expected only by considering the vorticity distribution, as i t  
was stated by Lin (1955). 

6. Vorticity distribution of the disturbed hyperbolic-tangent profile 
The distribution of vorticity .Ro of the basic flow is given by 

.Ro = - d U / d y  = - Q sech2 y 

fi1 = auliax - aullay = - 

(36) 

137) 

If we set Q1 = g[w(y) eiaQ-ct)], (38) 

w(y) = - [+’’ - a241 = - { U”/( u - c))  $, (39) 

and is the same for both profiles (11) and (33). The vorticity of the disturbance 
becomes, from (l), 

then using (2) and (3) the complex amplitude function w(y) of the vorticity is 
obtained as 

where o,(y) is a symmetric function and wi(y) an antisymmetric one. The vorticity 
amplitude w(y) according to (39) was computed together with the eigenfunctions 
($4). For the neutral case, a = 1, it  follows that 

w, = 2sech3y, wi = 0, (40) 

(41) and, for a = 0, or = 0, wi = 2 tanh y sech2 y. 
In  figure 8 w,(y)and wi(y )  are plotted for the wave-numbers a = 1, a = 0.9, 
01 = 0.6, a = 0.4446, a = 0-2 and a = 0. From equation (39) we see that w,(O) = 0 
for ci $: 0 according to U”(0) = 0, but for ci = 0 we have w,(O) = 2. Therefore 
i t  is evident that there is no uniform convergence of w,( 0) as ci -+ 0, and the gradi- 
ent dw,/dy increases rapidly in the neighbourhood of y = 0 as ci -+ 0. This seems 
to be due to the neglect of viscosity. 
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Ql(x, y, t) = eacit[w,(y) cosa(x-c,t) -wi(y) sina(x-c,t)]. 

O1 = (OJ; + at)* eacitcos [a(z - c,t) + ~ ( y ) ] ,  

553 

The distribution of the disturbance vorticity (38) is given by 

(42) 

(43) 

This can be written as 

with the phase angle x defined by 

FIUIJRE 8. Vorticity amplitude o,.(y) and o&) of the hyperbolic-tangent 
velocity profile for various wave-numbers a. 

The wavy disturbance ( 2 )  which was assumed for the stability calculation can 
also be interpreted as a vorticity disturbance as Michalke (1963) showed for the 
Rayleigh shear layer. The magnitude of ill a t  t = 0, 

Ifill = (w,"+w:)), (45) 

is plotted in figure 9. From (43) it can be seen that for ci + 0 two maxima of vor- 
ticity with Ql < 0 exist outside the critical layer y = 0, one for y < 0 and one 
for y > 0 within a wavelength A. Only one maximum with ill < 0, however, is 
found for ci = 0 within a wavelength A, and that is at x = $A, y = 0. Thus we 
see that there is a qualitative distinction between amplified disturbances and 
the neutral disturbance in the distribution of vorticity. 
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This distinction can be more clearly observed if we consider the total vorticity 

h2 = h2,,+eQ, = - +sech2y+~ee"cit[w,(y) cosa(z-c,t) -w,(y)sina(x-c,t)]. (46) 

distribution, which is given by 

For t = 0,  the lines of constant vorticity were computed from the formula 

h2 = - Q sech2y + e[w,(y) cos ax - wi(y) sin ax] = const. (47) 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
Y 

FIGURE 9. Magnitude lRll of the disturbance vorticity of the hyperbolic-tangent 
velocity profile for various wave-numbers u. 

The results are plotted in figure 10 for a = 0-4446 and a = 1, using the relatively 
large value 0.2 for e in order to show the phenomenon more clearly. It is evident 
that for the most strongly amplified disturbance two maxima of vorticity are 
present within a wavelength, but only one maximum for the neutral disturbance, 
as indicated above. 

If we interpret these concentrations of vorticity as 'vortices', it  is obvious 
that in the neutral case the arrangement of vorticity corresponds essentially 
to a one-row vortex street. With respect to their mutual induction this arrange- 
ment is an equilibrium state of motion. Yet in the case of amplified disturbances 
the arrangement of vorticity corresponds to two parallel vortex rows which are 
displaced relative to one another. Therefore an equilibrium state exists no more. 
Both 'elementary vortices ' within a wavelength will obviously have a tendency 
to rotate around their centre or, taking the transport velocity into account, to 
slip round each other. This behaviour has been explained by Domm (1956). 
We may expect that under the influence of viscosity the two 'elementary vortices ' 
might coalesce. This process might then explain the formation of vortices in free 
boundary layers, which have been observed in experiments, among others by 
Schade & Michalke (1962) and Wille (1963). It was found that in the fully de- 
veloped vortex flow of free boundary layers to consecutive vortices do 'slip ' and, 
finally, coalesce into a vortex of larger intensity, if they are displaced relative to 
one another. A similar initial state obviously arises in the disturbed free boundary 
layer according to linearized stability theory, as mentioned above. 
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But these considerations go far beyond the framework of inviscid linearized 
stability theory. In  order to prove this hypothesis about the formation of vortices 
in free boundary layers the non-linear development of the disturbed free boundary 
layer must be investigated, e.g. by application of the theory by Stuart (1961) 
and Watson (1960). A first attempt to calculate the non-linear development of 
the disturbed Rayleigh shear layer was made by Michalke (1963) using a very 
rough approximation. 

I I 
9 I 1 I , I  I I II - 
0 2 4 6 8 10 12 14 5 

I I I I  I !  c 

0 2 4 6 x  
FIGURE 10. Lines of constant vorticity of the disturbed hyperbolic-tangent velocity 
profile for the wave-numbers of maximum amplification a = 0.4446 and of the neutral 
disturbance a! = 1 at  the time t = 0 and a disturbance magnitude E = 0.2. 
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